Nanoporous PbSe–SiO2 Thermoelectric Composites
نویسندگان
چکیده
Nanoporous architecture has long been predicted theoretically for its proficiency in suppressing thermal conduction, but less concerned as a practical approach for better thermoelectric materials hitherto probably due to its technical challenges. This article demonstrates a study on nanoporous PbSe-SiO2 composites fabricated by a facile method of mechanical alloying assisted by subsequent wet-milling and then spark plasma sintering. Owing to the formation of random nanopores and additional interface scattering, the lattice thermal conductivity is limited to a value as low as 0.56 W m-1 K-1 at above 600 K, almost the same low level achieved by introducing nanoscale precipitates. Besides, the room-temperature electrical transport is found to be dominated by the grain-boundary potential barrier scattering, whose effect fades away with increasing temperatures. Consequently, a maximum ZT of 1.15 at 823 K is achieved in the PbSe + 0.7 vol% SiO2 composition with >20% increase in average ZT, indicating the great potential of nanoporous structuring toward high thermoelectric conversion efficiency.
منابع مشابه
Thermoelectric performance of n-type (PbTe)0.75(PbS)0.15(PbSe)0.1 composites.
Lead chalcogenides (PbQ, Q = Te, Se, S) have proved to possess high thermoelectric efficiency for both n-type and p-type compounds. Recent success in tuning of electronic band structure, including manipulating the band gap, multiple bands, or introducing resonant states, has led to a significant improvement in the thermoelectric performance of p-type lead chalcogenides compared to the n-type on...
متن کاملField-effect modulation of Seebeck coefficient in single PbSe nanowires.
In this Letter, we present a novel strategy to control the thermoelectric properties of individual PbSe nanowires. Using a field-effect gated device, we were able to tune the Seebeck coefficient of single PbSe nanowires from 64 to 193 microV x K(-1). This direct electrical field control of sigma and S suggests a powerful strategy for optimizing ZT in thermoelectric devices. These results repres...
متن کاملWeak electron-phonon coupling contributing to high thermoelectric performance in n-type PbSe.
PbSe is a surprisingly good thermoelectric material due, in part, to its low thermal conductivity that had been overestimated in earlier measurements. The thermoelectric figure of merit, zT, can exceed 1 at high temperatures in both p-type and n-type PbSe, similar to that found in PbTe. While the p-type lead chalcogenides (PbSe and PbTe) benefit from the high valley degeneracy (12 or more at hi...
متن کاملChemical composition tuning in quaternary p-type Pb-chalcogenides--a promising strategy for enhanced thermoelectric performance.
Recently a significant improvement in the thermoelectric performance of p-type ternary PbTe-PbSe and PbTe-PbS systems has been realized through alternating the electronic band structure and introducing nano-scale precipitates to bulk materials respectively. However, the quaternary system of PbTe-PbSe-PbS has received less attention. In the current work, we have excluded phase complexity by fabr...
متن کاملSeminar Talk
Thermoelectrics (TE) is a green renewable energy technology which plays an import role in power generation due to its potential in generating electricity out of waste heat. The challenge for the development of thermoelectric is its low conversion efficiency. The efficiency of thermoelectric materials is related to the figure of merit, which is expressed as ZT = S2σT/, where S is the Seebeck coe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2017